Magic With Physics

...Get Free Solution Of Question...

Latest

To solve any problem of Physics, first learn all formulas and study where the formula use and solve various types of problems...
18:59

Gravitational Force





Newton's Law Of Gravitation:
     Newton's Law of gravitation states that,"Every particle of matter attracts every other particle of matter with a force which is directly proportional to the product of their masses and inversely proportional to the square of the  distance between them."
      
       F ∝ M m
       F ∝  1/r²
            ∴ F ∝ M m/r²
            ∴ F = G M m/r²
    G is a universal gravitational constant

 SI Unit of universal gravitational constant is Nm²/kg².
  And the C. G. S. unit is dynecm²/g²

Value Of G is 6.673×10^-11

And the dimension of G is
          
                


Points to study in Gravitational Force
👉  Acceleration due to gravity (g)

👉 Variation of 'g' due to Altitude, Latitude  and Depth

👉 Study of Satellite
     1) Projection of satellite
     2) Periodic time of satellite
     3) Binding energy and Escape velocity of           satellite.
👉  Kepler's law of motion

👉 Weightlessness.

👉 Uses of satellite.

👉 About Planets

👉 Black Hole

👉  Acceleration due to gravity (g)

       Let M is mass of the earth, R is radius of the earth. Consider an object of mass m situated on the surface of the earth, g  is  the gravitational acceleration due to gravity at the earth's surface. The weight of the object is equal to gravitational Force acting on it. 

On earth surface,
Weight of the object = Gravitational force 
             
        mg = GMm/R²
    
           g = GM /R²

At height h
               gh = GM /(R+h)²

       or   gh = g (R/R+h)²

👉 Variation of 'g' due to Altitude, Latitude  and Depth
(1) Variation of g due to Altitude
  
               gh = g [1-2h/R]

(2) Variation of g due to Depth
      
              gd = g [1-d/R]

(3) Variation of g due to Latitude 
   
              g' = g - R⍵²θ²

                                       Variation of g due to latitude at sea level

     Latitude              g (m/s²)       
          0⁰    9.7804
         10⁰    9.7819
         20⁰    9.7864
         30⁰    9.7933
         40⁰    9.8017
         50⁰    9.8107
         60⁰    9.8192
         70⁰    9.8261
         80⁰    9.8306
         90⁰    9.8322

 👉Study of Satellite 

Projection of satellite 

       Satellite means an object which revolves in an orbit around a planet.  There is many artificial satellite which is man made & Moon is the natural satellite of the Earth. 

          For projection of satellite there is minimum two stage rocket is used. In this rocket satellite is kept at the tip means at the top position. Initially the fuel in the first stage of the rocket is ignited on earth surface , so the rocket riser to desired height.  Now by remote control,  the empty first stage is detached from rocket and rocket rotates 90 degree so that it points in horizontal direction. When fuel in second stage is completely burn then second stage is detached. The resulting motion of the satellite depends upon the velocity of the projection given to it. 

" Critical Velocity, the minimum horizontal velocity of projection that must be given to a satellite at a certain height, so it can revolve in a circular orbit around earth. 
" Escape Velocity, the minimum velocity with which a body should be projected from the surface of the earth, so that it escape from the earth's gravitational field.

Different cases of projection of satellite 

      Satellite moves in elliptical orbit, when the velocity of the projection is less than the critical velocity. But the point of projection is apogee and in the orbit the satellite comes closer to the earth with its perigee point lying at 180 degree. If it enters the atmosphere while coming towards perigee it will loose energy and spiral down. If does not enter the atmosphere, it will continue to move in elliptical orbit. 

            Elliptical orbit when Vc<V<Ve
    If the velocity of projection is greater than the critical velocity but less than the escape velocity, then the satellite moves in elliptical orbit and its apogee, or point of greatest distance from the earth, will be greater than projection height.

           Circular orbit when V = Vc
Satellite moves in circular orbit around the earth when velocity of the projection is equal to the critical velocity. 

         Parabolic path when V =Ve
Satellite moves in parabolic path when velocity of projection is equal to escape velocity. 

         Hyperbolic path when V>Ve
Satellite escape from gravitational pull of the earth and travel infinitely when the velocity of projection is greater than the escape velocity and when the orbit is hyperbolic  


Periodic time of satellite
                 The time taken by the satellite to complete one revolution round the earth is called its period or periodic time (T). 



👉  Kepler's law of motion

Kepler's first law (Law of orbit) 
      
      Every planet revolves in an elliptical orbit round the sun, with the sun situated at one of the focii of the ellipse. 

Kepler's second law (Law of areas)  

      The radius vector drawn from the sun to any planet sweeps out equal areas in equal intervals of time. 
i.e. The areal vector of the radius vector is constant. 

[ According to the Kepler's second law, when a planet is closest to the rain, its speed is maximum and when it is farthest from the sun its speed is minimum ]

Kepler's third law (Law of period) 

    The square of the period of revolution of the planet around the sun is directly proportional to the cube of the semi major axis of the elliptical orbit. This law is known as the harmonic law. 
14:48

Aldehydes , Ketones And Carboxylic Acids


Welcome to Organic Chemistry Class. In this post we discuss the organic chemistry chapter Aldehydes, Kitones and Carboxylic Acids.


Aldehyde & Ketone are also known as Carbonyl Compound because present of (>C=O) Carbonyl group.

What Is An Aldehyde ?

 An Aldehyde is the first oxidation product of primary alcohol. The functional group is formyl or aldehyde group  (-CHO )always present at the terminal carbon of the chain. 

What Is Ketone ?

A Kitone is the first oxidation product of secondary alcohol. The functional group is keto or oxo group ( >C=O ) not located at the terminal carbon of the chain.

What Is Carbonyl Group ? 

  Carbonyl Group is a functional group in which a carbon atom is attached to an Oxygen atom by a double bond and remaining two valencies of carbon atom are free is called a carbonyl group and represent as >C=O
 
 Nomenclature of Aldehydes:
Common Name System:
(1) The names of aldehydes are derived from the common names of acids.
(2) THe suffix ' -ic acid ' of an acid replace by 'aldehyde'.
(3) The positions of the substituents in the molecule are indicated by Greek letters α,β,y, etc. starting from the carbon atom attached to the carbonyl group 

IUPAC System:
(1) The longest carbon atoms chain containing aldehyde carbon atom is selected as a parent                          hydrocarbon.
(2) 'e' of the alkane is replaced by 'al'.
(3) the position of aldehyde group need not be mentioned since it is a;ways at the end position.
(4) The substituent in the alkyl group are prefixed in an alphabetical order by appropriate locants.

 Compound        Common name      IUPAC name    
 HCHO Formaldehyde  Methanal 
 CH3CHO Acetaldehyde  Ethanal 


 Nomenclature of Ketones:
 Common Name System:
(1) Ketones are name according to the alkyl groups attached to the carbonyl carbon atom followed by the word ketone
(2) The substituents in the alkyl groups are indicated by Greek lettters  α,β,y, etc. starting from the carbon atom attached to the carbonyl group.

IUPAC System:
(1) The longest continuous chain containing carbonyl carbon atom is selected as a parent hydrocarbon.
(2) 'e' of the alkane is replaced by 'one'.
(3) The position of carbonyl group is represented by the lowest locant.
(4) The substituents in the alkyl groups are prefixed in the alphabetical order along with their positions by appropriate locants.

 Compound        Common name      IUPAC name    
 H3C. COCH3 dimethyl ketone 
(acetone) 
 Propanone
 H3C. COC2H5 ethyl methyl ketone   butanone

Preparation Methods Of Aldehyde And Ketone


Aldehyde and Ketone can be prepared by following methods:

      1. Oxidation of alcohol 
      2. Catalytic dehydrogenation of alcohols
      3. Oxidation of alkenes
      4. Hydration of alkenes 
      5. Hydrolysis of geminal dihalide
      6. Pyrolysis of calcium salt of carboxylic acid
      7. Reduction of acid chloride
      8. Oxo process 
      9. Wacker process   

  1. Oxidation of alcohol :

            Aldehyde and ketone can be prepared by controlled oxidation of 1° & 2°  alcohol using acidified solution of potassium permanganate KMnO₄ or potassium dichromate K2Cr2O7 . 1° alcohol produce Aldehyde and 2° alcohol produce Ketone.
                                                        

    2. Catalytic dehydrogenation of alcohols :

              When Aldehyde and Ketone can be prepared, when vapor of 1° and 2° alcohol is pass over copper catalyst at 300°C result in the formation of aldehyde and ketone.
                                                               

     3. Oxidation of alkenes  : ( ozonolysis ) 

               When alkene subjected for oxidation with ozone gas and on hydrolysis with zinc dust it gives aldehyde and ketone.
                                                                

      4. Hydration of alkenes :

               when alkene such as Acetylene on hydrogen yield.  water molecule is added to acetylene in the presence of mercuric sulphate HgSO4 and sulfuric acid, it result in the formation of unstable molecule called as enol. which is on entra molecule rearrangement gives acetaldehyde. 

                                                                  
         Hydrogen of alkene other then acetylene gives Ketone. water is added according to marconi rule to form unstable enol, which is on rearrangement gives Ketone.
 

        5. hydrolysis of geminal dihalide :

                   Geminal dihalide are compound which has two halogen attached to same carbon. Ketone, Aldehyde can be prepare by alkene hydrolysis of geminal dihalide in which two halogen atom can be replace with OH group. result in the formation of unstable diol. which is hydration result in the formation of wither Aldehyde or Ketone. 

       6. Pyrolysis of calcium salt of carboxylic acid : 

                 Symmetrical ketone can be prepare by this method, when calcium salt of carboxylic acid is heated at 400°C. we only can prepare ketone by this method and can not prepare aldehyde.

        7. Reduction of acid chloride :

             Aldehyde can be prepare by hydrogenation of acid chloride in presence of platinum supported over barium sulfate solution   

        

  • What is Schiff's reagent ?
      Schiff's reagent is an oxidizing agent. Schiff's reagent is prepared by dissolving pink p-rosaniline hydrochloride in water and passing SO2 gas till the pink solution is decolourised.
      When an Aldehyde is added to Schiff's reagent, the colourless solution turns pink or in magenta colour and aldehyde is oxidised to a carboxylic acid. 

Did u know 🤔🤔

  •  Formaldehyde is gas at room temperature.
  • Formaldehyde is used as a disinfectant. 
  • Formaldehyde is use for silvering mirrors. 
  • Formaldehyde is use in the preparation of variety of plastics and resins. 
  •  Acetaldehyde boils at 20 °C
  •  Acetaldehyde is used as a starting material for the preparation of many compounds.
  • Acetone is used as a commercial solvent.
  •  Acetone is used in manufacture of explosives, lacquers, paint removers, plastic, drugs, perfumes,etc.
  • density of aldehyde & ketone is less than water. 

               



     
           
 



09:29

Physics Intro-SI Prefixes, units, Dimensions, symbols etc


Physical Quantity
         All the quantities in terms of which laws of physics are described and which can be measured directly or indirectly are called physical quantities.
For example mass,  length,  speed, time etc. 

Types of Physics Quantity 

1) Fundamental Qualntities
       The physical quantities which do not depend upon other physical quantities are called fundamental quantities or also known as base physical quantities 
e.g.  Time, temperature, mass, length,                    electric current, luminous intensity 
        and amount of substance

2) Derived quantities 
     The physical quantities which depend on
     Fundamental quantities are called.                Derived quantities
e.g.  Acceleration, speed, force etc.

Unit
        The chosen standerd of measurement of a physical quantity, which has the same nature as that of the quantity is called the unit of that quantity. 
Choice of Unit
   The first thing is that it should have international acceptation that means Universally accepted and also accurately defined and it should not change with time.

Fundamental and Derived Units

     Fundamental units means which are independent of unit of other physical quantity and cannot be further resolve into any other units of the units of fundamental physical quantities are called
Fundamental or base units. 
e.g. metre, kilogram, second etc

All unit other than fundamental are Derived units, which are depend on fundamental units.
e.g. unit of speed (metre per sec) (which              depend upon length) 
      Unit of time, unit of momentum etc. 

Different types of system of units

C.G.S. units (Centimetre-Gram-Second) 
 In this system unit of length is centimeter,
 mass is gram and for time is second

M.K.S. units (Metre-Kilogram-Second) 
  In this system unit of length is metre, mass is kilogram and for time is second 

S.I. units (international System) 
     In 1971 CGPM held its meeting and decided a system of units which is known as S.I. (international system) of units. By international agreement, 7 physical quantities have been chosen as fundamental or base physical quantities.

 S.No. Quantity  Name of Units Symbol
 1 Length metre     m
 2 Mass kilogram      kg
 3 Time second      s
 4  Electric Current ampere     A
 5 Termodyanamic Temperature  kelvin     K
 6 Amount of Substance  mole   mol
 7 Luminous Intensity  candela     cd

 S.No. Supplementary   physical
 quantity 
 Supplementary
 unit 
 Symbol
 1 Plane angle radian    rad
 2 Solid angle steradian     sr

SI Prefixes:
Power of 10  prefix  symbol
  18 exa    E
  15 peta    P
  12 tera    T
   9 giga    G
   6 maga    M
   3 kilo    k
   2 hecto    h
   1 deka   da
  -1 deci    d
  -2 centi    c
  -3 milli    m
  -6 micro    μ
  -9 nano    n
  -12 pico    p
  -15 femto    f
  -18 atto     a

Some Important Practical Units :

(a) 1A.U.(Astronomical unit) = 1.496 × 10¹¹m

(b) 1ly (light year) = 9.46 × 10¹⁵ m

(c) 1 parsec = 3.1 × 10¹⁶ m

(d) 1 micron = 10¯⁶ m

(e) 1nanometre = 10¯⁹

(f) 1 angstrom = 10¯¹⁰

(g) 1 C.S.L(chandrasekhar limit) = 1.4 times        the mass of the sun

(h) 1 amu = 1.67×10¯²⁷ kg

(i) 1 pound = 453.6 g = 0.4536 kg

(j) 1 bar = 1atm pressure = 10⁵ N/m² = 760.         mmHg


Some Important Physical Constant 

  • Velocity of light in vacuum (c) = 3 × 108 ms-1
  • Velocity of sound in air at STP = 331 ms-1
  • Acceleration due to gravity (g) = 9.81 ms-2
  • Avogadro number (N) = 6.023 × 1023/mol
  • Density of water at 4oC = 1000 kgm-3 or 1 g/cc.
  • Absolute zero = -273.15oC or 0 K
  • Atomic mass unit = 1.66 × 10-27 kg
  • Quantum of charge (e) = 1.602 × 10-19 C
  • Stefan’s constant = 5.67 × 10–8 W/m2/K4
  • Boltzmann’s constant (K) = 1.381 × 10-23 JK-1
  • One atmosphere = 76 cm Hg = 1.013 × 105 Pa
  • Mechanical equivalent of heat (J) = 4.186 J/cal
  • Planck’s constant (h) = 6.626 × 10-34 Js
  • Universal gas constant (R) = 8.314 J/mol–K
  • Permeability of free space () = 4π × 10-7 Hm-1
  • Permittivity of free space () = 8.854 × 10-12 Fm-1
  • The density of air at S.T.P. = 1.293 kg m-3
  • Universal gravitational constant = 6.67 × 10-11 Nm2kg-2


Astronomical Constant 

 S. No.  Quantity  Value Unit
  1 Mass of the sun 

 1.99×10^30       kg
  2 Radius of the sun 

 6.95×10^8 m
  3 Mass of the earth 

 5.98×10^24 kg
  4 Mean radius of the earth  

 6.37×10^6 m
  5 Mass of the moon

 7.36×10^22 kg
  6 Radius of the moon

 1.74×10^6 m
  7 Mean earth-sun distance 

 1.50×10^11 m
  8  Mean earth-moon distance
 
 3.84×10^8 m
  9 Escape speed from the earth
 
 11.2 km/s
 10 Escape sore from the moon

 2.38 km/s

Unit and Dimension of Physical Quantities

 S.No. Physical  Quantity       Symbol         SI Unit                    Dimension      
 1 Displacement  s Metre (m)
 L
 2 Mass  m,M Kilogram 
M
 3 Time  t Second (s) 
T
 4 Area  A m2 
L2
 5 Volume V m3
 L3
 6 Density ρ kg m–3
 ML–3
 7 Velocity v,u m s–1  
LT–1
 8 Acceleration a m s–2 
LT–2
 9 Force F newton (N) 
MLT–2
 10 Work W joule (J) 
ML2T–2
 11 Energy E,U,K joule (J) 
ML2T–2
 12 Power P watt (W) 
ML2T–3
 13 Momentum p kg-m s–1 
MLT–1
 14 Gravitational constant G N-m2 kg–2  
L3M–1T–2
 15 Angle Ө radian 

 16 Angular velocity ω rad s–1  
T–1
 17 Angular Acceleration  ∝ rad s–2  
T–2
 18 Angular Momentum L kg-m2 s–1  
ML2T–1
 19 Moment of inertia I kg-m2 
ML2
 20 Torque τ N-m 
ML2T–2
 21 Angular frequency ω rad s–1  
T–1
 22 Frequency v hertz (Hz) 
T–1
 23 Period T s 
T
 24 Young's modulus  Y N m–2 
ML–1T–2
 25 Bulk modulus  B N m–2 
ML–1T–2
 26 Shear modulus  η N m–2 
MLT–2
 27 Surface tension  S N m–1 
MT–2
 28 Coefficient of viscosity η N-s m–2 
ML–1T–1
 29 Pressure P,p N m–2, Pa 
ML–1T–2
 30 Wavelength λ m 
L
 31 Intensity of wave  I W m–2 
MT–3
 32 Temperature T Kelvin (K)  

 33 Specific heat capacity  c J kg–1 -K–1 
L2T–2K–1
 34 Stefan's constant σ W m–2 -K–4 
MT–3K–4
 35 Heat Q J 
ML2T–2
 36 Thermal conductivity K W m–1 -K–1 
MLT–3K–1
 37 Current  I Ampere (A) 
I
 38 Charge q,Q coulomb (C) 
IT
 39 Current density j A m–2  
IL–2
 40 Electrical conductivity σ 1/Ω -m 
I2T3M–1L–3
 41 Dielectric constant k  

 42 Electric dipole moment  p C-m 
LIT
 43 Electric field E Vm–1 
MLI–1T–3
 44 Potential V volt (V) 
ML2I–1T–3
 45 Electric flux  Φ V-m 
ML3I–1T–3
 46 Capacitance C farad (F) 
I2T4M–1L–2
 47 Electromotive force E volt (V) 
ML2I–1T–3
 48 Resistance R ohm (Ω) 
ML2I–2T–3
 49 Permittivity of space  ε0 C2N–1 -m–2 
I2T4M–1L–3
 50 Permeability of space μ0 N A–2 
MLI–2T–2
 51 Magnetic field B tesla (T) 
MI–1T–2
 52 Magnetic flux Φ0 weber (Wb) 
ML2I–1T–2
 53 Magnetic μ N-mT–1 
IL2
 54 Inductance L henry (H) 
ML2I–2T–2

        
22:38

Force




   When we heard Force,  our first thinking about this word is Pull or Push. When you push something you exert a force toward yourself, and when you pull something then you exert force toward yourself. 
              Not only living body,  non-living body also exert force. Such as tension force in a string, if the heavy block is attached to the string and also Normal force perpendicular to the surface if the block placed on any surface. 
The SI Unit is newton 
Force is vector quantity 
We can find resultant force of body if more then one force act on a body by using law of vector addition. 

According to the Newton's Third law of motion "If a body A exerts a force F on another body B, then B exerts a -F force on A"
      "Every action their is always an equal and opposite reaction." 


Their is four categories in which we can place various types of forces
(1) Electromagnetic Force
(3) Nuclear 
(4) Weak Force 
        ( click on the type of force to study )
22:34

Physicists And Their Discovery


Physicists And Their Discovery
 

Name Of Physicist

 

 Discovery 

 Abdus Salam Unification of weak and electromagnetic interactions
 Albert Einstein Explanation of photoelectric effect & Theory of Relativity
 Archimedes  Principle of buoyancy & Principle of the lever
 Arthur Compton light can behave as a particle as well as wave
 Alessandro Volta Invented electric battery & Wrote First electromotive series
 Alhazen  Explained why camera image are upside down
 Amedeo Avogadro  Elements could exist in the form of molecules rather than as individual atom & Originator of Avogadro's law.
 Benjamin Frankli A founder father of USA & gives the electrical term +ve & -ve
 C.H. Townes Invented Maser & Laser  and established black hole is center of milky way
 Christiaan Huygens Wave theory of light
 C.V. Raman Raman Effect; Inelastic scattering of light by molecules
 Daniel Bernoulli Bernoulli effect 
 Edwin Hubble Expanding Universe 
 Enrico Fermi Controlled nuclear Fission    
 Ernest Orlando Lawrence  Invented  Cyclotron
 Ernest Rutherford  Father of nuclear chemistry; Nuclear model of atom 
 Ernest Walton First high energy particle accelerator
 Galileo Galilei Law of Inertia
 Heinrich Rudolf Hertz Generation of Electromagnetic wave
 Hans Christian Oersted Discovered Electromagnetism
 Hideki yukawa Theory of nuclear force
  Homi Jahangir Bhabha Cascade process of cosmic radiation 
 Issac Newton Universal law of gravitation; Laws of motion; Reflecting telescope
 Inge Lehmann Analyzed earthquake waves
 John Wallis Conservation of momentum
 James Clark Maxwell Light is electromagnetic wave 
 James chadwick Discovered the Neutron 
 John Bardeen Transistor; Theory of super conductivity
 J.C. Bose Ultra short radio wave
 J.J. Thomson Electron
 John Michel Tension  balance 
 Johannes Kepler Discovered that solar system's planet are in elliptical path 
 Joseph Henry Built Electromagnets 
 Lev Davidovich Landau Liquid Helium; Theory of condensed matter
 Louis Victor de Broglie Wave nature of matter
 Lise Meitner Invented atomic battery & Discovered nuclear fission
 Marie Sklodowska Curie Discovery of radium and polonium; Studies in natural radioactivity
 Michael Faraday  Laws of electromagnetic  induction & Faraday's  laws of electrolysis
 M.N. Saha Thermal ionisation
 Max Plank  Founded quantum theory
 Niels Bohr Quantum Model of Hydrogen atom
 Paul Dirac  Relativistic theory of electron; Quantum statistics 
 Pyotr Kapitsa Superfluidity
 Robert Hook Discovered Hook's law in physics & Discovered cells 
 R.A. Millikan Measurements of electronic charge 
 S. Chandrashekhar  Chandrashekhar limit &Evolution of stars 
 S.N. Bose Quantum statistics 
 Victor Francis Hess Cosmic Radiation 
 Warner Heisenberg Quantum mechanics; Uncertainty principle 
 W.K. Roentgen X-ray 
 Willard Gibbs Vector Analysis  
 William Gilbert Scientific study of Magnetism 
 Wolfgang Pauli Exclusion principle 
                                Home



             
12:28

Wave


Wave Motion:

        Wave motion is a type of motion in which the disturbance travels from one point of the medium to another but the particles of the medium do not travel form one point to another. 
For the propagation of wave, medium must have inertia and elasticity. These two properties of medium decide the speed of wave. 

Amplitude:

               The maximum displacement of any particle from its mean position is called amplitude (a) of the wave.

 

Period:

        The time taken (T) for any particle to complete one vibration is called period of the wave. 

Frequency:

     The number of vibrations per second by a particle is called frequency (n) of the waves where
 n = 1/T. The frequency can also be said to be the number of waves passing per second across any point of the medium.

Wavelength:

         The distance between two consecutive particles of the medium which are in the same phase or which differ in phase by 2π (radians) is called wavelength (λ) of the wave.

Types of waves

    There are Two types of waves 
1) Mechanical wave :  These waves require material for their propagation. 
For example : Sound waves, etc. 

     There are two types of Mechanical waves

i) Transverse wave: The particles of medium oscillate in a direction perpendicular to the direction of wave propagation. 

ii) Longitudinal waves: The particles of medium oscillate about their mean position along the direction of wave propagation. 

2) Non mechanical waves (Electromagnetic wave) : This waves do not require any material medium for their propagation. 
For example : X-ray,  Light waves etc. 

Equation of a Harmonic Wave:


         Harmonic wave are generated by sources that execute simple harmonic motion.

    A Harmonic wave travelling along the positive (+ve) direction of x-axis is represented by



   y=A sin (ωt–kx)

         =A sin {2π(t/T–x/λ)}

         =A sin {2π/λ(vt–x)}



        Where,

 ☞ y = displacement of the particle of          the medium at a location X at time t

☞ A = amplitude of the wave

☞ λ = wavelength

☞ T = time period

☞ v = velocity of the wave in the

      medium, Ʋλ

☞ ⍵ = angular frequency, 2π/T

☞ k = angular wave number, 2π/λ

            If the wave is travelling along the negative (–ve) direction of x-axis then

        y = A sin (⍵t + Kx)


Differential equation of wave motion:


   d²y/dx² = 1/v² × d²/dt²

Relation between wave velocity and particle velocity:

 y = A sin (⍵t – kx) .....(i)



Particle velocity,

        Vp = dy/dt = A⍵ cos(ωt–kx) ......(ii)


Slope of displacement curve,

         dy/dx = –Ak cos (ωt–kx) ......(iii)


When we divide equation (ii) by equation (iii), we get the following

              Vₚ = –v. dy/dx


☞ λ = Ʋ2π/ω = ƲT.

☞ k = 2π/λ

        = 2πv/Ʋ

        = ω/Ʋ.

       

Relation between phase difference, path difference and time difference :

☞Phase difference of 2π radian is equivalent to a path difference λ and a time difference of period T.

                               

☞Phase difference = (2π/λ)× path difference

                               Φ = (2π/λ)×x

                                                  x= (λ/2π)×Φ

☞Phase difference =(2π/T)× time difference

                               Φ = (2π/T) ×t

                                                    t = (T/2π)×Φ

☞Time difference = (T/λ)×path difference

                                t = (T/λ)×x

                                               x= (λ/T)×T

Speed of Sound in a gas

Newton's formula

Laplace's correction 
  

Did you know 🤔🤔

  • For a wave 
          v = fλ

  • The velocity of sound in air 

  • Particle velocity is given by vp = dx/dt. It changes with time. The wave velocity is the velocity with which disturbance travel in the medium and is given by vw = ω/k.

  • When a wave reflects from denser medium, the phase change is  π and when the wave reflects from rarer medium, the phase change is zero. 

  • In a tuning fork, the wave produced in the prongs is transverse whereas in the stem is longitudinal. 

  • A medium in which the speed of wave is independent of the frequency of the waves is called non-dispersive. 
    For example Air is non-dispersive.                  medium for the sound waves. 

  • Transverse waves can propagate in the medium with shear modulus of elasticity.  
                                                                                                                                    More....